

Zyto Light SPEC FGFR2 Dual Color Break Apart Probe

REF Z-2169-200



For the detection of translocations involving the FGFR2 gene at 10q26.13 by fluorescence *in situ* hybridization (FISH)

(E

In vitro diagnostic medical device

according to EU directive 98/79/EC

Fluorescence-labeled polynucleotide probe for the detection of translocations involving the FGFR2 gene at 10q26.13, ready to use

Product Description

Content: Zyto Light SPEC FGFR2 Dual Color Break Apart

<u>Probe</u> (**PL125**) in hybridization buffer. The probe contains green-labeled polynucleotides (ZyGreen: excitation at 503 nm and emission at 528 nm, similar to FITC), which target sequences mapping in 10q26.12-q26.13 proximal to the FGFR2 gene, and orange-labeled polynucleotides (ZyOrange: excitation at 547 nm and emission at 572 nm, similar to rhodamine), which target sequences mapping in 10q26.13 distal to the

FGFR2 gene.

Product: Z-2169-200: 0.2 ml (20 reactions of 10 μ l each)

Specificity: The <u>Zyto Light SPEC FGFR2 Dual Color Break</u>

Apart Probe (PL125) is designed to be used for the detection of translocations involving the FGFR2 gene at 10q26.13 in formalin-fixed, paraffin-embedded tissue or cells by fluorescence

in situ hybridization (FISH).

Storage/Stability: The Zyto Light SPEC FGFR2 Dual Color Break

Apart Probe (PL125) must be stored at 2...8°C protected from light and is stable through the

expiry date printed on the label.

Use: This product is designed for *in vitro* diagnostic

use (according to EU directive 98/79/EC). Interpretation of results must be made within the context of the patient's clinical history with respect to further clinical and pathologic data of the patient

by a qualified pathologist!

Safety Precautions: Read the operating ins

Read the operating instructions prior to use!

Do not use the reagents after the expiry date has

been reached!

This product contains substances (in low concentrations and volumes) that are harmful to health. Avoid any direct contact with the reagents. Take appropriate protective measures (use disposable gloves, protective glasses, and lab garments)!

If reagents come into contact with skin, rinse skin immediately with copious quantities of water!

A material safety data sheet is available on request for the professional user!

Principle of the Method

The presence of certain nucleic acid sequences in cells or tissue can be detected by *in situ* hybridization using labeled DNA probes. The hybridization results in duplex formation of sequences present in the test object with the labeled DNA probe.

Duplex formation (with sequences of the chromosomal region 10q26.12-q26.13 in the test material) is directly detected by using the tags of fluorescence-labeled polynucleotides.

Instructions

Pretreatment (dewaxing, proteolysis, post-fixation) should be carried out according to the needs of the user.

Denaturation and hybridization of probe:

1. Pipette $10 \mu l$ Zyto Light SPEC FGFR2 Dual Color Break Apart Probe (PL125) each onto individual samples

A gentle warming of the probe, as well as using a pipette tip which has been cut off to increase the size of the opening, can make the pipetting process easier. Avoid long exposure of the probe to light.

- **2.** Avoiding trapped bubbles, cover the samples with a coverslip (22 mm x 22 mm). Seal the coverslip, e.g. with a layer of hot glue from an adhesive pistol or with rubber cement
- **3.** Denature the slides at 75°C (±2°C) for 10 min, e.g. on a hot plate Depending upon the age of the sample and variations in the fixation stage, it may be necessary to optimize the denaturing temperature (73°C-77°C).
- **4.** Transfer the slide to a humidity chamber and hybridize overnight at 37°C (e.g. in a hybridization oven)

It is essential that the tissue/cell samples do not dry out during the hybridization step.

Further processing, such as washing and counter-staining, can be completed according to the user's needs. For a particularly user-friendly performance, we recommend the use of a ZytoLight FISH system by ZytoVision. These systems were also used for the confirmation of appropriateness of the ZytoLight SPEC FGFR2 Dual Color Break Apart Probe (PL125).

Results

With the use of appropriate filter sets, the hybridization signals of the labeled chromosomal region 10q26.12-q26.13 appear green and orange. In interphases of normal cells or cells without a translocation involving the 10q26.13 band, two green/orange fusion signals appear. One 10q26.13 locus affected by a translocation is indicated by one separate green signal and one separate orange signal.

In order to judge the specificity of the signals, every hybridization should be accompanied by controls. We recommend using at least one control sample in which the 10q26.13 status is known.

Care should be taken not to evaluate overlapping cells, in order to avoid false results, e.g. an amplification of genes. Due to decondensed chromatin, single FISH signals can appear as small signal clusters. Thus, two or three signals of the same size, separated by a distance equal to or less than the diameter of one signal, should be counted as one signal.

Our experts are available to answer your questions.

Literature

Arai Y, et al. (2013) Hepatology [Epub ahead of print].

Kievits T, et al. (1990) Cytogenet Cell Genet 53: 134-6.

Seo JS, et al. (2012) Genome Res 22: 2109-19.

Wu YM, et al. (2013) Cancer Discov 3: 636-47.

Wilkinson DG: In Situ Hybridization, A Practical Approach, *Oxford University Press* (1992) ISBN 0 19 963327 4.

As of: February 5, 2014 (5.1)

Trademarks:

ZytoVision® and ZytoLight® are trademarks of ZytoVision GmbH.

ZytoVision GmbH · Fischkai 1
D · 27572 Bremerhaven · Germany
Phone: +49 (0) 471/4832 · 300
Fax: +49 (0) 471/4832 · 509
www.zytovision.com
info@zytovision.com

Your local distributor